*
07 апреля

Исследователи объяснили коллапс полимерных гелей

Полимерные гели обладают необычными свойствами. В частности, они поглощают воду в объеме, превышающем их собственный в сотни раз. Например, некоторые гидрогели способны удерживать до двух килограмм воды на один грамм сухого геля.  Изменив температуру или добавив растворители, можно получить определенные свойства. Поэтому полимерные гели используются в промышленности и биомедицине, в том числе для адресной доставки лекарств, создания искусственной кожи, детских игрушек и др. 

Если взять гель с большой объемной долей растворителя и понижать температуру, то при достижении некоторой предельной температуры произойдет резкое уменьшение объема геля и выдавливание большого количества жидкости из его объема - коллапс (сжатие). 

Впервые теория коллапса геля была предложена американскими физико-химиками Полом Флори и Джоном Ренером младшим в 1943 году и впоследствии развита японским ученым Тсуёши Танакой. Недостаток классической теории в том, что она не учитывала особенности молекулярной структуры звеньев полимера. Новую теорию предложила команда российских ученых в составе профессора МИЭМ НИУ ВШЭ Юрия Будкова, аспиранта ИХР РАН Николая Каликина и научного сотрудника Института неклассической химии в Лейпциге Андрея Колесникова. Исследователи разработали микроскопическую теорию полимерного геля, на каждом звене которого расположен электрический диполь - два равных по величине, но противоположные по знаку электрические заряды. 

Такая молекулярная структура чаще всего встречается в цвиттерионных полимерах, звенья которых несут одновременно положительно и отрицательно заряженные ионные группы. 

Авторы показали, что при достаточно низких температурах именно электростатические взаимодействия звеньев полимера приводят к коллапсу геля. А также назвали основные параметры, влияющие на температуру перехода из расширенного в сжатое состояние.

“На практике мы не можем управлять молекулярными свойствами звеньев полимеров, но благодаря нашей теории химики смогут заранее создавать полимеры с подходящими свойствами и управлять температурой коллапса”, - комментирует Юрий Будков профессор МИЭМ ВШЭ.

Ученые отмечают, что сделанные теоретические оценки будут полезны в современных приложениях цвиттерионных гелей, таких как суперабсорбенты, молекулярные нанореакторы, антибактериальные покрытия, электропроводящие мембраны для химических источников тока, искусственная кожа, искусственные мышцы и другие. 

Текст: пресс-служба НИУ ВШЭ